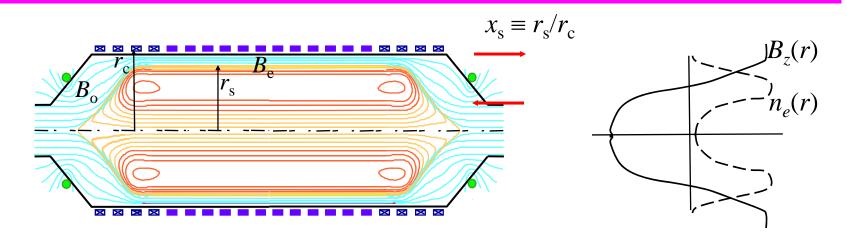


1

Field Reversed Configurations

Prof. Alan L. Hoffman Redmond Plasma Physics Laboratory University of Washington

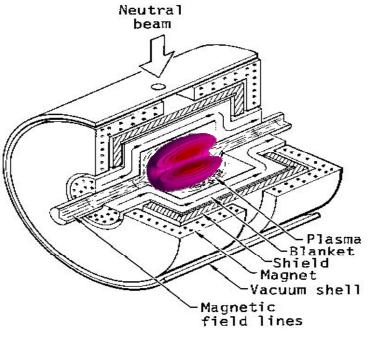
Presentation to FESAC Alternates Panel (July 1, 2008)


Outline

- FRC reactor advantages
- Major physics issues
 - Stability
 - Current Drive (RMF & TNBI)
 - Confinement
- RMF scaling & how to address issues
- Steady-state and pulsed comparisons

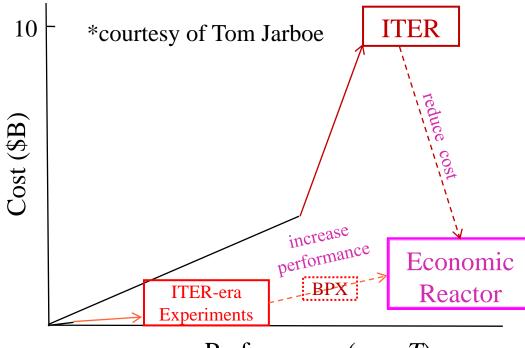
*Very little FRC funding other than TCS over last decade.

**Some slides will be gone over rapidly due to time constraints, but details are included for later question period.


A Compact Toroid (CT) is the Ideal 'Engineered' Toroidal Confinement Geometry

- Linear (or spherical) external vacuum chamber with closed field line plasma configuration.
- Open ends for scrape-off layer plasma flow.
- An FRC (Field Reversed Configuration) with minimal toroidal field must be high $\langle\beta\rangle = 1 x_s^2/2$. (Minimum $\langle\beta\rangle = 50\%$)
- Density-temperature product fixed by external field (*length variable*). $n_{\rm m}kT_{\rm t} = B_{\rm e}^2/2\mu_{\rm o}$
- Diamagnetic (azimuthal) toroidal currents. $I'=2B_e/\mu_o$

FRC Reactor Advantages



LLNL FRM Schematic (1976)

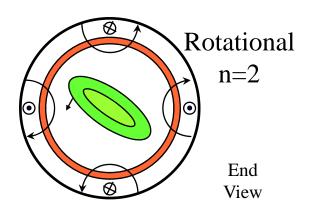
- Studies (U. Wisconsin, EPRI) show
 tremendous blanket simplifications due to
 singly connected linear geometry and
 lowered cost due to simple low field
 confinement coils. Aneutronic fuel options?
- 'Disruptions' not a problem for diamagnetic plasmas.
- Divertor loadings can be made as low as desired.
- Rapid development path possible due to small size & cost.
- Recent favorable results on low power formation of hot FRCs, steady-state maintenance, stability, and transport make this the right time for an expanded (relatively inexpensive) effort.

Complementary Approaches (Engineering or Physics Emphasis)

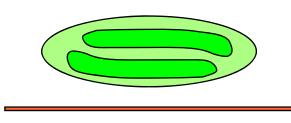
Simple plasma chamber, unrestricted 'divertor', and low field coils make both reactor and the effort to reach reactor conditions much less expensive than for a low β toroidal system!

Performance (n, τ, T)

ITER-era goals: Demonstrate combined good confinement & steady-state current drive at kilovolt temperatures, and the theoretical understanding to allow extrapolation to an FRC Burning Plasma Experiment

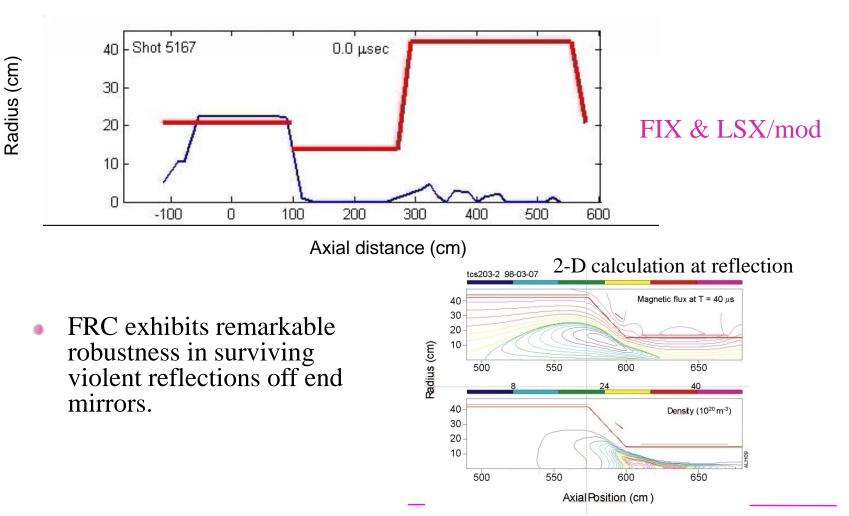


MAJOR FRC ISSUES


STABILITY
CONFINEMENT
CURRENT DRIVE

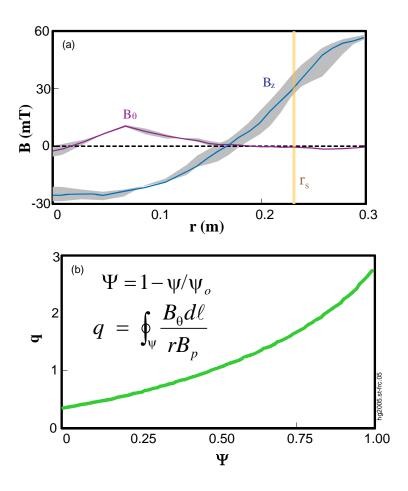
Somewhat related for a diamagnetic plasma

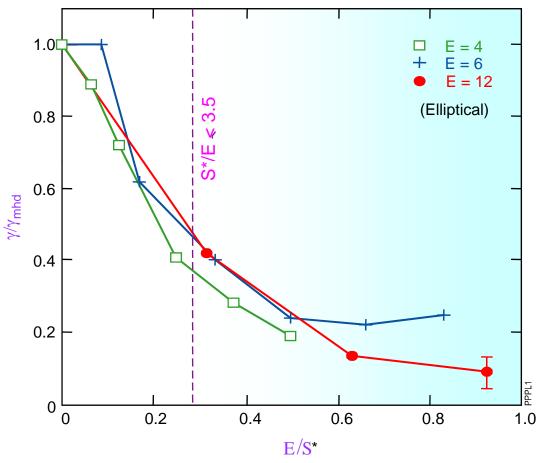
Most Studied Problem - Stability


Internal Tilt

Side View

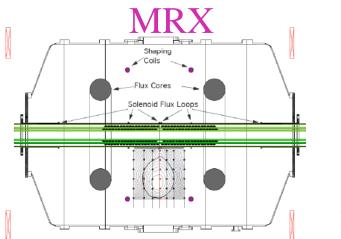
- Ion diamagnetic rotation drives n=2 mode due to centrifugal forces.
 - It has been stabilized by weak multipoles with $B_m^2/2\mu_o$ > centrifugal pressure, *and now by RMF*.
- *Internal tilt* is more insidious starts out as an axial n=1 shift.
 - Most studied mode theoretically with various ideas proposed for experimental stability.
 - Most studies based on kinetic stabilization due to low $s = \int_{R}^{r_s} dn \rho_i$.
 - Experiments built to produce large s FRCs have not encountered tilt instability.
 - Oblate FRCs observed stable in merging experiments.


FRC Translation Demonstrates Robustness (at least at low s)


High-β Minimum Energy State?

- B_{toroidal} appears, but FRC will be high β as long as $B_{\theta} \ll B_z$. (*definition of FRC*)
- Due to large κ and small $A \gtrsim$ have high qand $dq/d\psi$ even with low B_{θ}/B_{z} .
- Properties similar to those calculated for high-β Minimum Energy State (MSE). (rotational n=2 distortion stable even without multipole fields.)
- Similar results seen in RMF sustained FRCs.

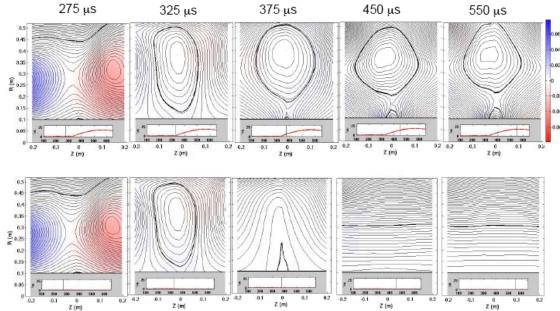
Growth Rate of Tilt Mode (from 3D HYM simulation)



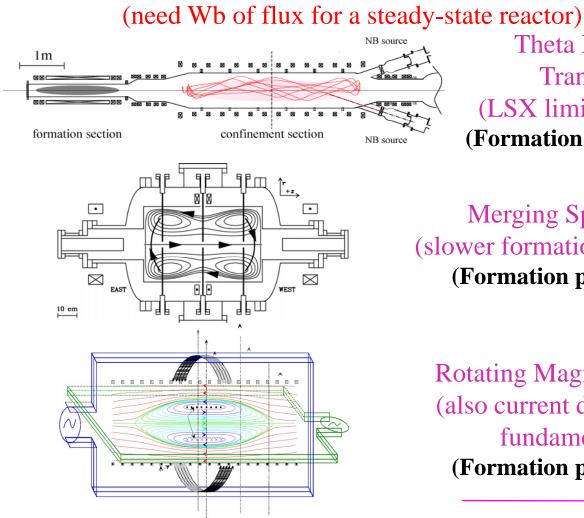
Calculations by E. V. Belova et al.

- Kinetic calculations generally have shown reduction of tilt rate at low s, but not positive stabilization, at least in linear phase.
- Other effects are calculated to be important, such as strong flow, residual toroidal field, ion viscosity, Hall effects.
 - Recent calculations show oblate FRC can be completely stabilized by fast ion component!

Oblate FRCs formed by spheromak merging



Inductive sustainment , using internal solenoid.

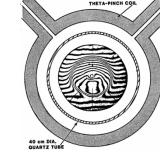

No sustainment. —

Inductive core sustainment produces stable oblate FRCs in MRX, but only in heavy gases.

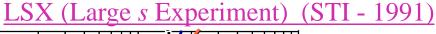
Available FRC Formation Methods (hard to overcome initial radiation barriers at high β)

Theta Pinch Formation and Translation/Expansion (LSX limited to $\phi_p \sim 10-20$ mWb) (Formation power input ~ 10s of GW)

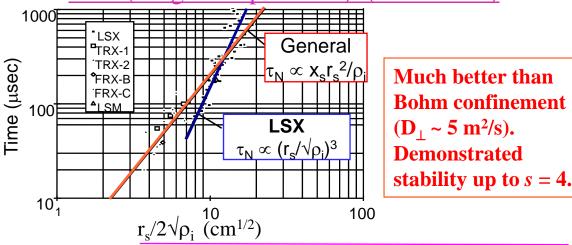
Merging Spheromak Formation (slower formation – flux limits unknown) (Formation power input ~ 100 MW)


Rotating Magnetic Field Formation (also current drive mechanism – no fundamental flux limit) (Formation power input ~ 1 MW)

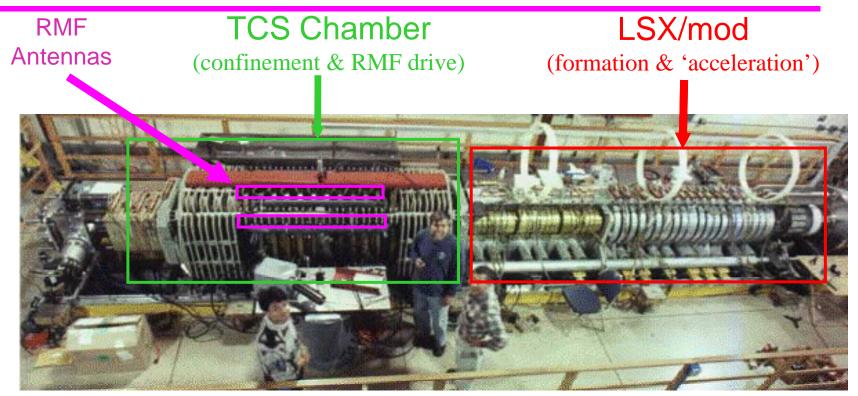
High Power (GW) θ-Pinch Facilities (historical approach, but now mostly of interest for high density pulsed approaches)

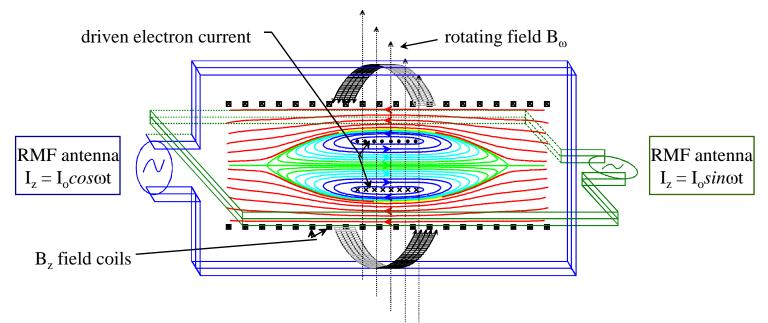


FRXC/T (LLNL - early 1980s)


Studied translation & adiabatic compression

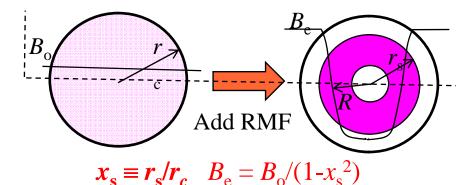
Interferogram taken on FRX-C using holography





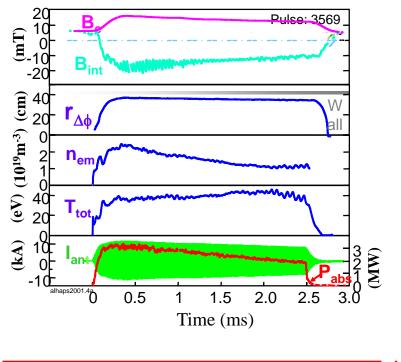
- Study Formation & Sustainment of RMF driven FRCs.
 - Either form FRCs directly using RMF alone, or translate and expand theta-pinch formed FRCs from LSX/mod (now not needed).

RMF Current Drive


(pioneered by I. Jones at Flinders University)

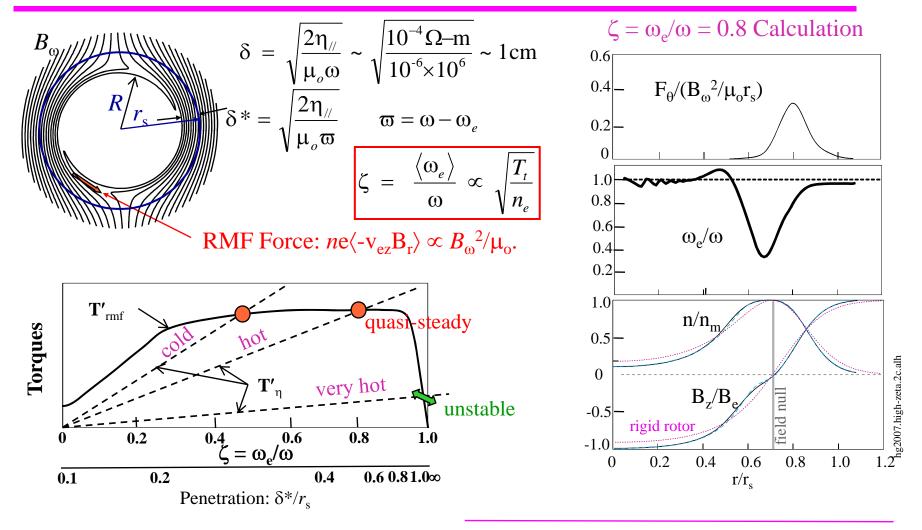
- 'Drag' Electrons Along With Rotating Radial Field $(F_{\theta} \sim \langle V_{ez}B_r \rangle \text{ force})$
 - Must have $\omega_{ci} < \omega << \omega_{ce}$, and $\omega_{ce} \tau >> 1$ for electrons, but not ions, to follow rotation
- Deep penetration into highly conducting column possible due to near synchronous outer electron rotation (ω_{edge} ~ ω).

Basic RMF Physics (developed by Flinder's University group)



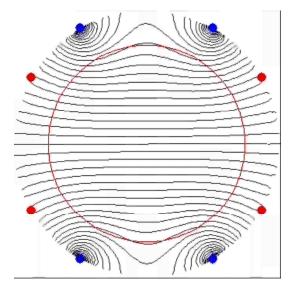
- $E_{\theta} = \eta_{\perp} j_{\theta} + v_{er} B_z + \langle -V_{ez} B_r \rangle$
- RMF torque on electrons: $\mathbf{T'}_{rmf} \approx 0.2\pi r_s^2 B_{\omega}^2 / \mu_o.$
- Opposed by electron-ion friction: $\mathbf{T'}_{\eta} \propto \pi r_s^2 \eta_{\perp} (B_e/\mu_o)^2 (n_e/T_t)^{1/2}.$

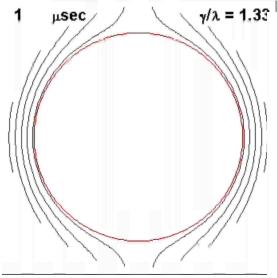
•
$$d\phi_p/dt = 2\pi R E_{\theta}(R) \propto (\mathbf{T'}_{rmf} - \mathbf{T'}_{\eta})$$

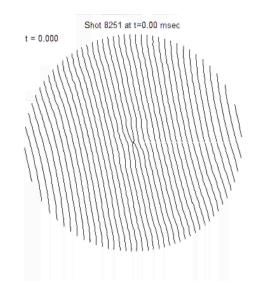

*basis of determining $\eta_{\perp} = 10\text{-}100 \ \mu\Omega\text{-m}$ ($\eta_{cl} = 0.5\text{-}5 \ \mu\Omega\text{-m}$ at $T_e = 30\text{-}200 \ eV$)

$$n_m(10^{20} \,\mathrm{m}^{-3}) = \frac{1.2 B_{\omega}^{4/3}(\mathrm{mT})}{\left\langle \eta_{\perp}(\mu \Omega - \mathrm{m}) \right\rangle^{2/3} T_t^{1/3}(\mathrm{eV})} \,^{*}$$

FRC flux sustainment requires partial RMF penetration



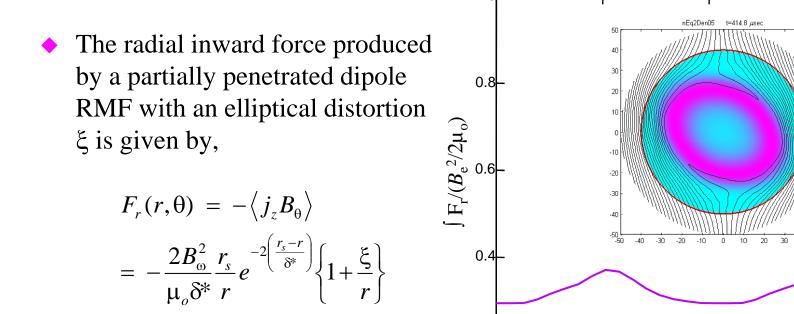



17

RMF Penetration Movies

Vacuum **calculation** in lab frame of reference

Plasma **calculation** in RMF frame of reference, with uniform resistivity. (Calculation starts from already formed FRC) Plasma **measurement** in RMF frame of reference


Partially Penetrated RMF Can Stabilize Interchange Instabilities (This has applicability well beyond FRCs)

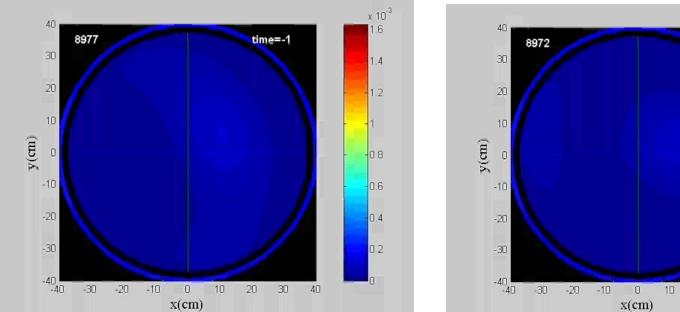
1.0

 180 θ°

270

Stable if $B_{\omega}^2/\mu_0 > 1.3 \langle \rho \rangle \Omega^2 r_s^2$. (Similar to previous multipole stabilization.)

0.2


0

90

360

Tomography Illustrates RMF Stabilization

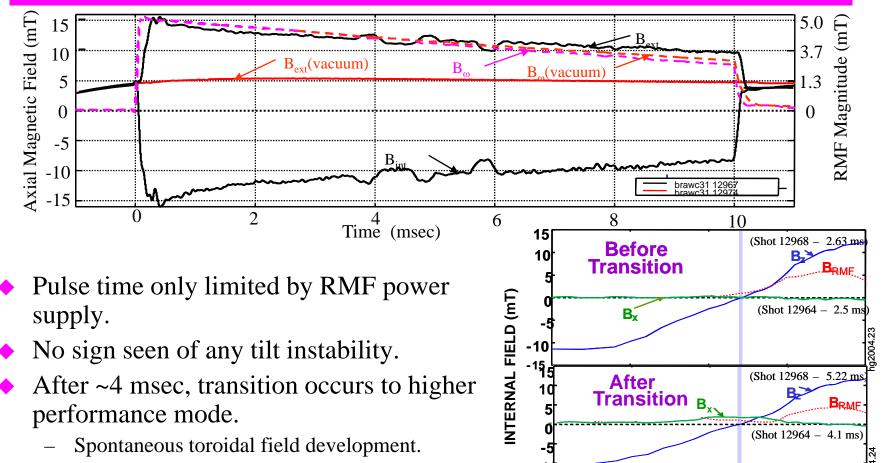
Standard Operation

Reduced Central RMF

time=-1

20

30


40

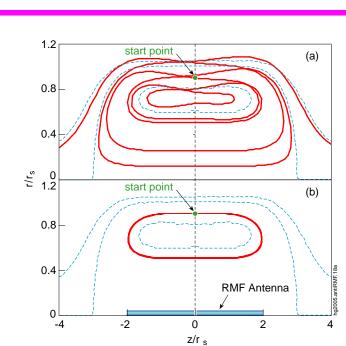
- The n=2 rotational instability is ubiquitous in θ -pinch formed FRCs due to ion spin-up in ion diamagnetic direction.
- Bulk plasma rotation always occurs in present RMF driven FRCs due to uncompensated torque on plasma electrons.

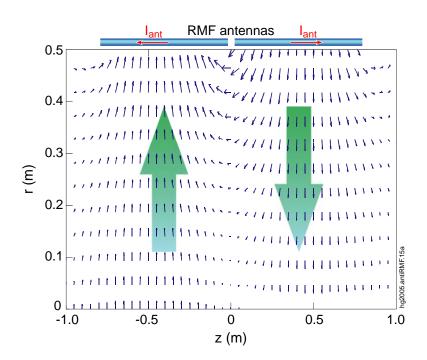
x 10^{°°}

0.5

-150

10

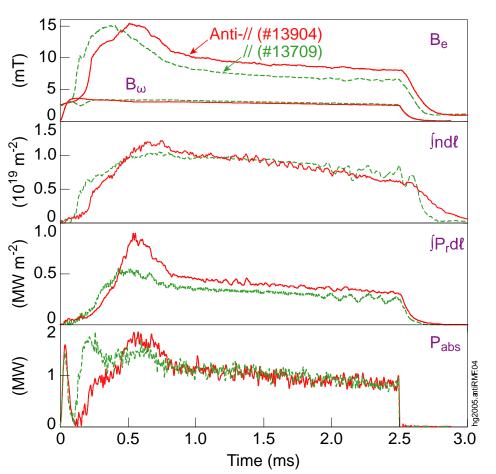

RADIUS (cm)


30

- RMF penetration profile changes.
- Lowering of interior resistivity.

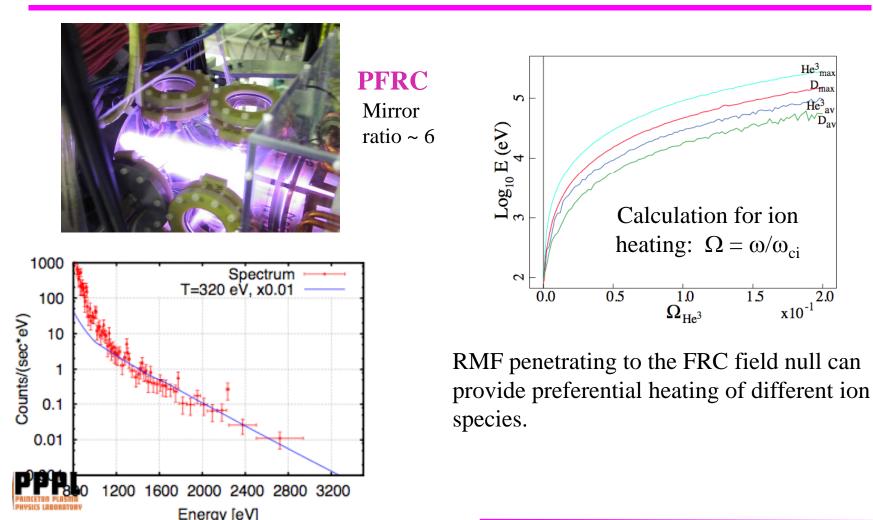
40

Odd-parity RMF Current Drive (Developed by Cohen & Milroy during PPPL support of Universities program)



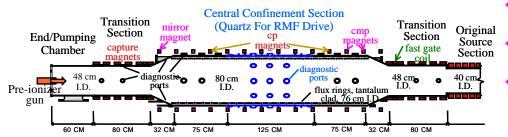
Anti-Symmetric RMF Field Pattern in Vacuum

Field Line Tracings for Even (top) & Odd-Parity RMF (bottom) $B_{\omega}/B_{e} = 0.25, \ \delta^{*}/r_{s} = 0.15$ (partial penetration is great advantage since B_{r} is small)


Reduction of Convection/Conduction Losses with Odd-Parity RMF Current Drive?

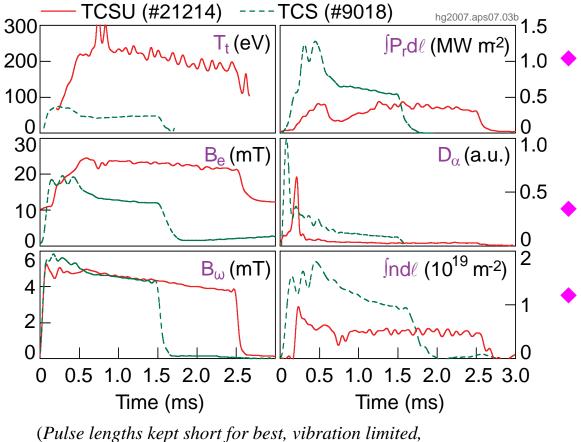
- Odd-parity, or anti-parallel, RMF drive is just as effective as even-parity drive, as evidenced by same achieved density and absorbed power.
- Magnetic field B_e is increased with odd-parity drive due to higher realized temperature, although still limited by radiation barriers.
- Exact reasons for improved TCS performance are not well understood since TCSU achieves high T_t even with even-parity operation.
- Odd-parity operation may not be important for present low *s* experiments since mostly uniform temperature, but should be critical for high *s* conditions!

RMF can provide strong heating for both mirrors and FRCs



TCS-upgrade built to control recycling of impurities and D_2

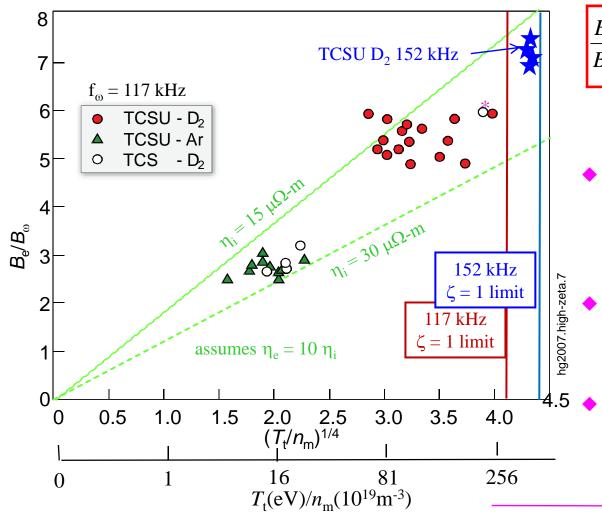
Completed early 2007



- Bakable (to 200°C), mostly all-metal construction.
- Extensive glow-discharge cleaning with provisions for wall-conditioning.
- Base vacuum pressure reduced from ~10⁻⁷ Torr to ~10⁻⁹ Torr.
- Impurity leakage in 1 day less than N_{FRC} (~10¹⁹).
- SOL strike points far from FRC.
- Even or odd-parity RMF antennas.
- LSX/mod not needed to overcome initial radiation barriers.

TCSU Results ($f_{\omega} = 117 \text{ kHz}$)

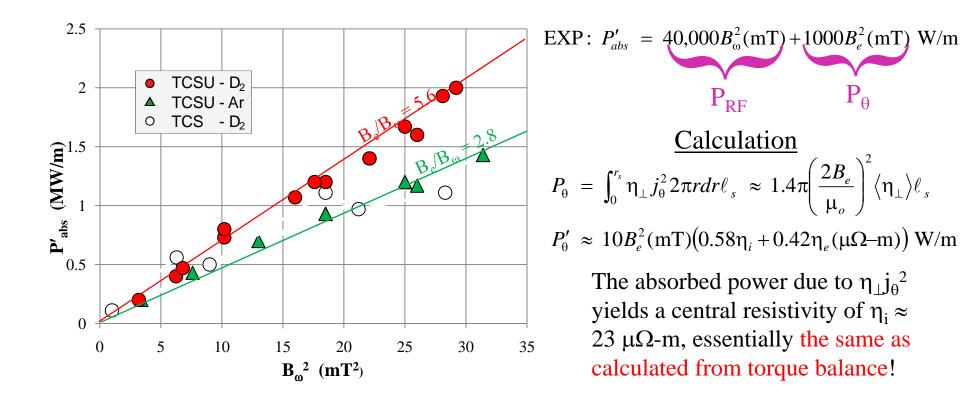
(baking & discharge cleaning only – external flux rings)



interferometer accuracy.)

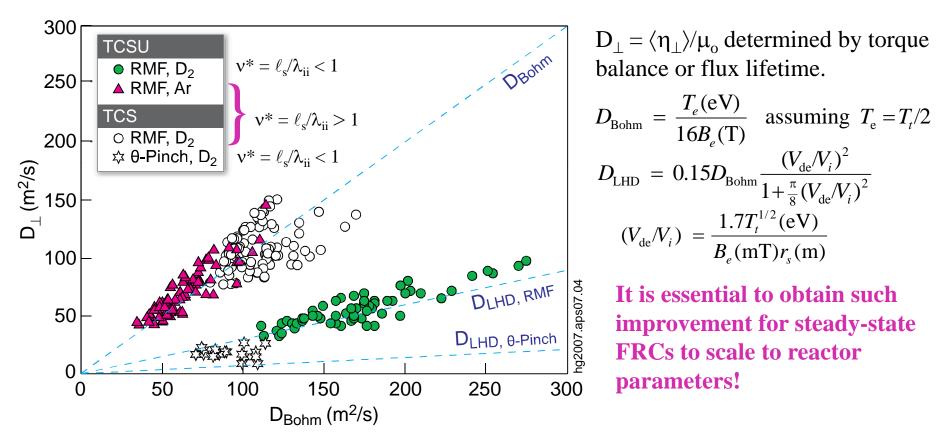
- Radiated power reduced.
 Recycling (as indicated by D_α line radiation) also strongly reduced.
- Temperature close to $\zeta \rightarrow 1$ limit.
- $B_{\rm e}$ nearly doubled due to higher $T_{\rm t}$ for similar B_{ω} .

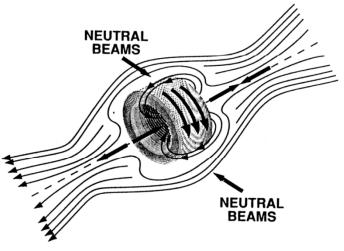
Measured B_e/B_{ω} Ratios Yield Cross-Field Resistivities


$$\frac{B_{e}}{B_{\omega}} = 13.1 \frac{\left(T_{t}(\text{eV}) / n_{m}(10^{19} \text{ m}^{-3})\right)^{1/4}}{\left<\eta_{avg}(\mu\Omega-\text{m})\right>^{1/2}}$$

 $\zeta = \langle \omega_e \rangle / \omega \propto B_e / n_e \propto \sqrt{T_t / n_e}$

- Maximum experimental T_t/n_m ratio of 250 in Deuterium close to $\zeta = 1$ limit of 280 for $f_{\omega} =$ 117 kHz.
- Resistivity certainly no worse at higher temperature, and most likely somewhat better!
 - Extended at higher frequency in agreement with RMF theory.


Plotting P'_{abs} versus B_{ω}^{2} reveals true nature of power absorption

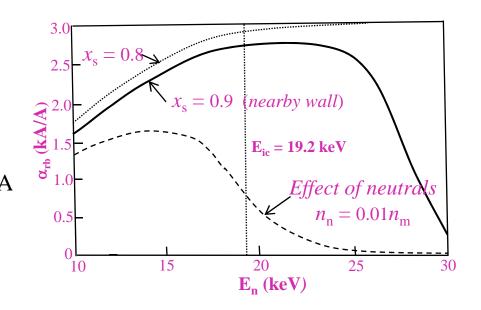

RMF scaling is well understood, and favors higher temperatures!

Can study confinement in low collisionality regime - LHD-type scaling rather than Bohm

 V_{de}/V_i is ~2.5 for TCSU and scales as $1/(n_e^{1/2}r_s)$, which points out the need for a larger, more powerful machine to make dramatic improvements!

Neutral Beam Injection (NBI) attempted in 2XIIB to produce Field Reversed Mirror (FRM)

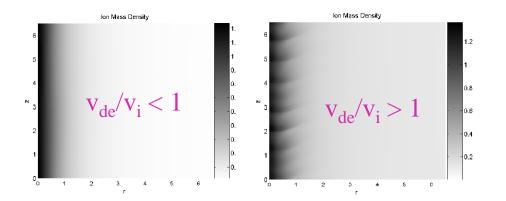
- Mirror 'advantages' were linear geometry with possible near-classical radial transport.
- FRM was one of two early 'Q-enhancement' approaches to plug mirror ends.
- Cannot produce field reversal by simple diamagnetism, and it may not be possible to do this slowly with Tangential NBI (TNBI).
- If have pre-existing FRC it will be straightforward to trap fast charge-exchange ions.
- Total azimuthal current is specified by FRC pressure gradients and flux: Fast ions will initially just replace some of the bulk electron current.


TNBI is an ideal complement to RMF since it inserts momentum in the opposite direction.

TNBI Monte-Carlo Calculations

Critical orbit: $E_{ic}(\text{keV}) = \frac{0.0144}{A_i} \left(\frac{\phi_p(mWb)}{r_s(m)}\right)^2$ $= 0.1r_s \text{ is ideal beam width}$

Calculations performed for 45 mWb FRC conditions which would be achievable in ITER-era facility without improvements in TCSU resistivities. ($r_s = 0.9 \text{ m}, B_e = 60 \text{ mT}, n_e = 0.15 \text{ x} 10^{20} \text{m}^{-3}, T_e = 320 \text{ eV}$)



$$I_{ring} = \frac{\tau_s}{2\pi r/v_b} I_{beam} \qquad \tau_s \approx \frac{0.02 T_e^{2/3} (keV)}{n_e (10^{20} \text{m}^{-3})} \text{ sec}$$
$$\alpha_{rb} \equiv \frac{I_{ring}}{I_b} = 0.75 \frac{T_e^{2/3} (keV) E_b^{1/2} (keV)}{A_i^{1/2} n_e (10^{20} \text{m}^{-3}) R(m)} \text{ kA/A}$$

31

FRC confinement improvements dependent on reductions in anomalous transport

- Recent calculations show η_{\perp} strongly reduced with $V_{de}/V_i < 1$
 - J. Loverich & U. Shumlak, 'Non-linear 2-fluid studies' POP (2006)
 - B. Rogers, 'Gyrokinetic simulations of plasma turbulence'' 2007 DPP GI2
- Tandem mirror results showing long radial diffusion lifetimes in Gamma 10
 - T. Cho, 'High confinement ...' 2007 DPP GI6
 - Radial $\tau_{\rm E} \sim 60\text{--}80 \text{ msec}$ with $\sim \delta_{\rm n} \sim 20 \text{ cm}$. (TCSU has $\delta_{\rm n} \sim 8 \text{ cm}$)
- $V_{\rm de}/V_{\rm i} \propto 1/n^{1/2}R$: extremely favorable for larger facility

Loverich & Shumlak calculations showing rapid turn-on of strong turbulence in diamagnetic plasmas when V_{de}/V_i exceeds unity, in agreement with many empirical scaling observations.

Need s > 3 to see internal confinement, and $E_{ic} > 15$ keV for TNBI

	Parameter	TCSU	ITER	-era FRC	Reactor	
	f_{ω} (kHz)	150		30	10	
	$r_{\rm s}({\rm m})$	0.37	0.9	0.9	2.0	
	$B_{\rm e}({\rm T})$	0.03	0.06	0.12	1.8	
	ϕ_{p} (Wb)	0.0035	0.045*	0.090**	4.5	TNBI should improve these values
	$T_{\rm i}, T_{\rm e}$ (keV)	0.12	0.32	0.65	10	
	$n_{\rm e} (10^{20}{\rm m}^{-3})$	0.1	0.15	0.3	4.0	
	s (in deuterium)	1.0	3.0	4.2	30	s can be increased by $\sqrt{2}$ using hydrogen
	λ_{ii} (m)	25	150	300	5,000	vz using nyurogen
	$ ho_{ci}(m)$	0.06	0.04	0.03	0.01	
	$V_{ m de}/V_{ m s}$	3	0.65	0.47	0.05	$\left. \right\} \text{ governs } \eta_{\perp} ?$
	$A_{ m i}$	2	2	2	2.5	Optimal TNBI energy
	$E_{\rm ic}({\rm keV})$	1.3	18	72	24,000	below $E_{\rm ic}$.

*obtainable with no decrease in $\eta_{\perp}.$

** requires decrease in by η_{\perp} factor of 4.

Pulsed vs Steady-State

For a given $n\tau_{\text{Ereq}}$ and D_{\perp} ; steady-state or pulsed, FRCs must operate at the same value of $r_s B_e$.

 $s \approx \frac{48x_s^{0.3}(r_s(m)B_e(T))}{\sqrt{A_iT_i(\text{keV})}}$

 $n\tau_{Ereq} \approx \frac{nr_s^2}{8D_\perp} \propto \frac{(r_s B_e)^2}{D_\perp}$

For a given $n\tau_{\text{Ereq}}$ and D_{\perp} ; steady-state or pulsed, FRCs will have the same *s* value.

Pulsed Advantages

- Less required flux, should make formation easier. $(\phi_p \propto r_s^2 B_e)$.
- Higher density may make it more likely to reach $D_{\perp} < 1 \text{ m}^2/\text{sec.}$
- If D_{\perp} can be made ~ 0.01 m²/sec, can operate at low *s*. $(r_{\rm s}B_{\rm e} \propto \sqrt{D_{\perp}})$.

Pulsed Disavantages

- Pulsed operation will most likely require larger $n\tau_{\rm E}$ for same 'Q'.
- Rapid repetition rate may be difficult, and material fatigue a problem.
- Large ratio of blanket volume to firstwall area will affect economics.

Options for FRC reactors

Numbers based on T = 10 keV and $n\tau = 5 \times 10^{20}$ m⁻³s.

Туре	r _s (m)	B _e (T)	<i>n</i> _e (m ⁻³)	$\tau_{\rm Ereq}$	φ _p (Wb)	S	$D_{\perp req}$ (m ² /s)	D _{Bohm} (m ² /s)	Req. D⊥/D _B	v _{de} /v _t
S-S	2.0	2	5x10 ²⁰	1 sec	6	35	0.5	300	0.002	0.005
PHD	0.06	28	1023	5 msec	0.075	15	0.1	20	0.005	0.01
MTF	0.006	630	5x10 ²⁵	10 µsec	0.017	35	0.5	1	0.5	0.005

*high *s* stability question cannot be avoided for a pure fusion reactor unless $D_{\perp} \sim 0.01 \text{ m}^2/\text{sec.}$ Fission-fusion could be an important application for FRCs, especially for pulsed FRCs.

Conclusions

• FRCs are a high risk, high reward approach to fusion.

- Cost of ITER-era new facilities are modest ~\$30M.
- The physics is extremely interesting.
- There are enough encouraging results to justify performing critical experiments.